Alternating strategies with internal ADMM for low-rank matrix reconstruction
نویسندگان
چکیده
This paper focuses on the problem of reconstructing low-rank matrices from underdetermined measurements using alternating optimization strategies. We endeavour to combine an alternating least-squares based estimation strategy with ideas from the alternating direction method of multipliers (ADMM) to recover low-rank matrices with linear parameterized structures, such as Hankel matrices. The use of ADMM helps to improve the estimate in each iteration due to its capability of incorporating information about the direction of estimates achieved in previous iterations. We show that merging these two alternating strategies leads to a better performance and less consumed time than the existing alternating least squares (ALS) strategy. The improved performance is verified via numerical simulations with varying sampling rates and real applications. & 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Alternating Strategies Are Good For Low-Rank Matrix Reconstruction
This article focuses on the problem of reconstructing low-rank matrices from underdetermined measurements using alternating optimization strategies. We endeavour to combine an alternating least-squares based estimation strategy with ideas from the alternating direction method of multipliers (ADMM) to recover structured low-rank matrices, such as Hankel structure. We show that merging these two ...
متن کاملFast Nonnegative Matrix Factorization with Rank-one ADMM
Nonnegative matrix factorization (NMF), which aims to approximate a data matrix with two nonnegative low rank matrix factors, is a popular dimensionality reduction and clustering technique. Due to the non-convex formulation and the nonnegativity constraints over the two low rank matrix factors (with rank r > 0), it is often difficult to solve NMF efficiently and accurately. Recently, the altern...
متن کاملRestricted Low-Rank Approximation via ADMM
The matrix low-rank approximation problem with additional convex constraints can find many applications and has been extensively studied before. However, this problem is shown to be nonconvex and NP-hard; most of the existing solutions are heuristic and application-dependent. In this paper, we show that, other than tons of application in current literature, this problem can be used to recover a...
متن کاملRecover the lost Phasor Measurement Unit Data Using Alternating Direction Multipliers Method
This paper presents a novel algorithm for recovering missing data of phasor measurement units (PMUs). Due to the low-rank property of PMU data, missing measurement recovery can be formulated as a low-rank matrix-completion problem. Based on maximum-margin matrix factorization, we propose an efficient algorithm based on alternating direction method of multipliers (ADMM) for solving the matrix co...
متن کاملAlgorithm-Induced Prior for Image Restoration
This paper studies a type of image priors that are constructed implicitly through the alternating direction method of multiplier (ADMM) algorithm, called the algorithm-induced prior. Different from classical image priors which are defined before running the reconstruction algorithm, algorithm-induced priors are defined by the denoising procedure used to replace one of the two modules in the ADM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 121 شماره
صفحات -
تاریخ انتشار 2016